Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Entropy in the classical and quantum polymer black hole models

Identifieur interne : 005544 ( Main/Exploration ); précédent : 005543; suivant : 005545

Entropy in the classical and quantum polymer black hole models

Auteurs : Etera R. Livine [France, Canada] ; Daniel R. Terno [Australie]

Source :

RBID : ISTEX:0572BABB363D1B923277E75B614B712126380733

Descripteurs français

English descriptors

Abstract

We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of almost-closed polyhedra.

Url:
DOI: 10.1088/0264-9381/29/22/224012


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Entropy in the classical and quantum polymer black hole models</title>
<author>
<name sortKey="Livine, Etera R" sort="Livine, Etera R" uniqKey="Livine E" first="Etera R" last="Livine">Etera R. Livine</name>
</author>
<author>
<name sortKey="Terno, Daniel R" sort="Terno, Daniel R" uniqKey="Terno D" first="Daniel R" last="Terno">Daniel R. Terno</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0572BABB363D1B923277E75B614B712126380733</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1088/0264-9381/29/22/224012</idno>
<idno type="url">https://api.istex.fr/document/0572BABB363D1B923277E75B614B712126380733/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000101</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000101</idno>
<idno type="wicri:Area/Istex/Curation">000101</idno>
<idno type="wicri:Area/Istex/Checkpoint">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000469</idno>
<idno type="wicri:doubleKey">0264-9381:2012:Livine E:entropy:in:the</idno>
<idno type="wicri:Area/Main/Merge">005811</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:13-0049922</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D07</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005157</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001165</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001165</idno>
<idno type="wicri:doubleKey">0264-9381:2012:Livine E:entropy:in:the</idno>
<idno type="wicri:Area/Main/Merge">006000</idno>
<idno type="wicri:Area/Main/Curation">005544</idno>
<idno type="wicri:Area/Main/Exploration">005544</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Entropy in the classical and quantum polymer black hole models</title>
<author>
<name sortKey="Livine, Etera R" sort="Livine, Etera R" uniqKey="Livine E" first="Etera R" last="Livine">Etera R. Livine</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Alle dItalie, Lyon 69007</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Perimeter Institute, 31 Caroline St N, Waterloo, ON N2L 2Y5</wicri:regionArea>
<wicri:noRegion>ON N2L 2Y5</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Terno, Daniel R" sort="Terno, Daniel R" uniqKey="Terno D" first="Daniel R" last="Terno">Daniel R. Terno</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109</wicri:regionArea>
<wicri:noRegion>NSW 2109</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Classical and Quantum Gravity</title>
<idno type="ISSN">0264-9381</idno>
<idno type="eISSN">1361-6382</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012-11-21">2012-11-21</date>
<biblScope unit="volume">29</biblScope>
<biblScope unit="issue">22</biblScope>
</imprint>
<idno type="ISSN">0264-9381</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0264-9381</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2iqa</term>
<term>Area unit</term>
<term>Asymptotics</term>
<term>Bessel function</term>
<term>Black hole</term>
<term>Black hole entropy</term>
<term>Black hole horizon</term>
<term>Black hole horizons</term>
<term>Black holes</term>
<term>Class angle</term>
<term>Classical counterpart</term>
<term>Classical density</term>
<term>Classical model</term>
<term>Classical polyhedra</term>
<term>Classical polymer model</term>
<term>Closure</term>
<term>Closure constraint</term>
<term>Closure constraints</term>
<term>Coherent intertwiner states</term>
<term>Coherent intertwiners</term>
<term>Coherent states</term>
<term>Constraint</term>
<term>Corrections</term>
<term>Correlations</term>
<term>Cosmology</term>
<term>D3vi</term>
<term>Dynamics</term>
<term>Entropy</term>
<term>Equidistant spectrum</term>
<term>Equivalently</term>
<term>Essential role</term>
<term>Exact intertwiner</term>
<term>Exterior geometry</term>
<term>External geometry</term>
<term>Fourier</term>
<term>Full closure constraints</term>
<term>Functionals</term>
<term>Fundamental representation</term>
<term>Fuzzy polyhedra</term>
<term>Gaussian</term>
<term>Gaussian approximation</term>
<term>Gaussian integrals</term>
<term>Geometric weight</term>
<term>Geometry state</term>
<term>Grav</term>
<term>Gravity</term>
<term>Group element</term>
<term>Hilbert</term>
<term>Hilbert space</term>
<term>Horizon area</term>
<term>Immirzi parameter</term>
<term>Interested reader</term>
<term>Intertwiner</term>
<term>Intertwiner space</term>
<term>Intertwiner states</term>
<term>Intertwiners</term>
<term>Irreducible representation</term>
<term>Large area</term>
<term>Linear regime</term>
<term>Livine</term>
<term>Loop gravity</term>
<term>Loop quantum gravity</term>
<term>Loop quantum gravity phys</term>
<term>Lowest pole</term>
<term>Matrix</term>
<term>Models</term>
<term>Nmax</term>
<term>Normal vector</term>
<term>Normal vectors</term>
<term>Optimal number</term>
<term>Other hand</term>
<term>Perimeter institute</term>
<term>Phase space formulation</term>
<term>Phys</term>
<term>Polyhedron</term>
<term>Polymer</term>
<term>Polymer model</term>
<term>Polymers</term>
<term>Present work</term>
<term>Previous work</term>
<term>Probability distribution</term>
<term>Puncture</term>
<term>Quantization</term>
<term>Quantized</term>
<term>Quantized polyhedra</term>
<term>Quantum</term>
<term>Quantum geometry</term>
<term>Quantum grav</term>
<term>Quantum level</term>
<term>Quantum model</term>
<term>Quantum polymer model</term>
<term>Regulator</term>
<term>SU(2) theory</term>
<term>Spinor</term>
<term>Spinor variables</term>
<term>Spinorial phase space</term>
<term>Spinors</term>
<term>Terno</term>
<term>Three dimensional space</term>
<term>Total area</term>
<term>Total boundary area</term>
<term>Unitary group</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Correction</term>
<term>Corrélation</term>
<term>Cosmologie</term>
<term>Dynamique</term>
<term>Entropie</term>
<term>Espace 3 dimensions</term>
<term>Gravitation quantique à boucles</term>
<term>Modèle</term>
<term>Polymère</term>
<term>Polyèdre</term>
<term>Théorie SU(2)</term>
<term>Trou noir</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>2iqa</term>
<term>Area unit</term>
<term>Asymptotics</term>
<term>Bessel function</term>
<term>Black hole</term>
<term>Black hole entropy</term>
<term>Black hole horizon</term>
<term>Black hole horizons</term>
<term>Black holes</term>
<term>Class angle</term>
<term>Classical counterpart</term>
<term>Classical density</term>
<term>Classical model</term>
<term>Classical polyhedra</term>
<term>Classical polymer model</term>
<term>Closure</term>
<term>Closure constraint</term>
<term>Closure constraints</term>
<term>Coherent intertwiner states</term>
<term>Coherent intertwiners</term>
<term>Coherent states</term>
<term>Constraint</term>
<term>D3vi</term>
<term>Entropy</term>
<term>Equidistant spectrum</term>
<term>Equivalently</term>
<term>Essential role</term>
<term>Exact intertwiner</term>
<term>Exterior geometry</term>
<term>External geometry</term>
<term>Fourier</term>
<term>Full closure constraints</term>
<term>Functionals</term>
<term>Fundamental representation</term>
<term>Fuzzy polyhedra</term>
<term>Gaussian</term>
<term>Gaussian approximation</term>
<term>Gaussian integrals</term>
<term>Geometric weight</term>
<term>Geometry state</term>
<term>Grav</term>
<term>Gravity</term>
<term>Group element</term>
<term>Hilbert</term>
<term>Hilbert space</term>
<term>Horizon area</term>
<term>Immirzi parameter</term>
<term>Interested reader</term>
<term>Intertwiner</term>
<term>Intertwiner space</term>
<term>Intertwiner states</term>
<term>Intertwiners</term>
<term>Irreducible representation</term>
<term>Large area</term>
<term>Linear regime</term>
<term>Livine</term>
<term>Loop gravity</term>
<term>Loop quantum gravity</term>
<term>Loop quantum gravity phys</term>
<term>Lowest pole</term>
<term>Matrix</term>
<term>Nmax</term>
<term>Normal vector</term>
<term>Normal vectors</term>
<term>Optimal number</term>
<term>Other hand</term>
<term>Perimeter institute</term>
<term>Phase space formulation</term>
<term>Phys</term>
<term>Polyhedron</term>
<term>Polymer</term>
<term>Polymer model</term>
<term>Present work</term>
<term>Previous work</term>
<term>Probability distribution</term>
<term>Puncture</term>
<term>Quantization</term>
<term>Quantized</term>
<term>Quantized polyhedra</term>
<term>Quantum</term>
<term>Quantum geometry</term>
<term>Quantum grav</term>
<term>Quantum level</term>
<term>Quantum model</term>
<term>Quantum polymer model</term>
<term>Regulator</term>
<term>Spinor</term>
<term>Spinor variables</term>
<term>Spinorial phase space</term>
<term>Spinors</term>
<term>Terno</term>
<term>Total area</term>
<term>Total boundary area</term>
<term>Unitary group</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cosmologie</term>
<term>Polymère</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of almost-closed polyhedra.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Canada</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Livine, Etera R" sort="Livine, Etera R" uniqKey="Livine E" first="Etera R" last="Livine">Etera R. Livine</name>
</region>
<name sortKey="Livine, Etera R" sort="Livine, Etera R" uniqKey="Livine E" first="Etera R" last="Livine">Etera R. Livine</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Livine, Etera R" sort="Livine, Etera R" uniqKey="Livine E" first="Etera R" last="Livine">Etera R. Livine</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Terno, Daniel R" sort="Terno, Daniel R" uniqKey="Terno D" first="Daniel R" last="Terno">Daniel R. Terno</name>
</noRegion>
<name sortKey="Terno, Daniel R" sort="Terno, Daniel R" uniqKey="Terno D" first="Daniel R" last="Terno">Daniel R. Terno</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005544 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005544 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0572BABB363D1B923277E75B614B712126380733
   |texte=   Entropy in the classical and quantum polymer black hole models
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024